NOIDA INSTITUTE OF ENGG. & TECHNOLOGY, GREATER NOIDA, GAUTAM BUDDH NAGAR (AN AUTONOMOUS INSTITUTE)

Affiliated to DR. A.P.J. ABDUL KALAM TECHNICAL UNIVERSITY UTTAR PRADESH, LUCKNOW

Evaluation Scheme & Syllabus For

Master of Technology

VLSI Design

First Year

(Effective from the Session: 2024-25)

NOIDA INSTITUTE OF ENGG. & TECHNOLOGY, GREATER NOIDA, GAUTAM BUDDH NAGAR (AN AUTONOMOUS INSTITUTE)

Master of Technology VLSI Design EVALUATION SCHEME SEMESTER-I

Sl.	Subject	Subject	Types of Subjects	P	eriod	ls		Evaluation Schemes			Er Seme		Total	Credit
No.	Codes		ŭ	L	T	P	CT	TA	TOTAL	PS	TE	PE		
1	AMTVL0101	CMOS Digital VLSI Design	Mandatory	3	0	0	20	10	30		70		100	3
2	AMTVL0102	Advanced Digital Design using Verilog	Mandatory	3	0	0	20	10	30		70		100	3
3	AMTCC0101	Research Process and Methodology	Mandatory	3	0	0	20	10	30		70		100	3
5		Departmental Elective-I	Departmental Elective-	3	0	0	20	10	30		70		100	3
6		Departmental Elective-II	Departmental Elective-	3	0	0	20	10	30		70		100	3
7	AMTVL0151	CMOS Digital VLSI Design Lab	Mandatory	0	0	4				20		30	50	2
8	AMTVL0152	Advanced Digital Design Lab using Verilog	Mandatory	0	0	4				20		30	50	2
		TOTAL											600	19

List of Departmental Electives: -

S.No.	Subject Code	Subject Name	Type of Subject
1	AMTVL0111	Microelectronics	Departmental Elective-I
2	AMTVL0112	MOS Device Modeling	Departmental Elective-I
3	AMTVL0113	Analog IC Design	Departmental Elective-I
S.No.	Subject Code	Subject Name	Type of Subject
1	AMTVL0114	Microchip Fabrication Technology	Departmental Elective-II
2	AMTVL0115	Clean Room Technology and Maintenance	Departmental Elective-II
3	AMTVL0116	ULSI Technology	Departmental Elective-II

Abbreviation Used:

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., CE: Core Elective, OE: Open Elective, DE: Departmental Elective, PE: Practical End Semester Exam, CA: Compulsory Audit, MOOCs: Massive Open Online Courses.

NOIDA INSTITUTE OF ENGG. & TECHNOLOGY, GREATER NOIDA, GAUTAM BUDDH NAGAR (AN AUTONOMOUS INSTITUTE)

Master of Technology VLSI Design EVALUATION SCHEME SEMESTER-II

Sl.	Subject	Cubica4	Types of Subjects	I	Period	S		Evaluat	tion Schem	nes End Semes		ester		Cua dia
No	Codes	Subject		L	Т	P	C T	TA	TOTA L	PS	TE	PE	Total	Credit
1	AMTVL0201	Digital Design Using FPGA and CPLD	Mandatory	3	0	0	20	10	30		70		100	3
2	AMTVL0202	Low Power VLSI Design	Mandatory	3	0	0	20	10	30		70		100	3
3		Departmental Elective-III	Departmental Elective	3	0	0	20	10	30		70		100	3
4		Departmental Elective-IV	Departmental Elective	3	0	0	20	10	30		70		100	3
5		Departmental Elective-V	Departmental Elective	3	0	0	20	10	30		70		100	3
6	AMTVL0251	Digital Design Using FPGA and CPLD Lab	Mandatory	0	0	4				20		30	50	2
7	AMTVL0252	Low Power VLSI Design Lab	Mandatory	0	0	4				20		30	50	2
8	AMTVL0253	Seminar-I	Mandatory	0	0	2				50			50	1
		TOTAL											650	20

List of Departmental Electives: -

S.No.	Subject Code	Subject Name	Type of Subject
1	AMTVL0211	VLSI Testing and Testability	Departmental Elective-III
2	AMTVL0212	VLSI DSP Architectures	Departmental Elective-III
3	AMTVL0213	Full Custom Design	Departmental Elective-III
S.No.	Subject Code	Subject Name	Type of Subject
1	AMTVL0214	MEMS Sensor Design	Departmental Elective-IV
2	AMTVL0215	Nanoscale Devices: Modeling &Simulation	Departmental Elective-IV
3	AMTVL0216	Physical Design & Automation	Departmental Elective-IV

S.No.	Subject Code	Subject Name	Type of Subject
1	AMTVL0217	Embedded Microcontrollers	Departmental Elective-V
2	AMTVL0218	Real Time Operating System	Departmental Elective-V
3	AMTVL0219	SOC Design using ARM	Departmental Elective-V

Abbreviation Used:

L: Lecture, T: Tutorial, P: Practical, CT: Class Test, TA: Teacher Assessment, PS: Practical Sessional, TE: Theory End Semester Exam., CE: Core Elective, OE: Open Elective, DE: Departmental Elective, PE: Practical End Semester Exam, CA: Compulsory Audit, MOOCs: Massive Open Online Courses.

	M. TECH FIRST YEAR					
Course Code	AMTVL0101	LTP	Credit			
Course Title	CMOS Digital VLSI Design	3 0 0	03			
Course Object	tive:					
1	To explain basics of MOS switch, MOS fabrication and					
	their characteristics.					
2	To explain basic concept of CMOS inverter operation, its					
	characteristics and switching power dissipation.					
3	To design static CMOS combinational and sequential					
	logic at the transistor level, including mask layout.					
4	To explain the concept of dynamic logic circuits.					
5	To design functional units including ROMs, SRAMs, and					
	DRAM.					
Pre-requisites	: Basics of CMOS.					
	Course Contents / S	Syllabus				
UNIT-I	MOS TRANSISTOR BASIC	10 hours				
MOS Transistor 1	Basic, MOS switch, VLSI Design flow & Y-Chart, Basic MO	OS Device	design equation and second order effect, Fabrication			
Process Flow: Ba capacitances.	sic Steps, The CMOS n-Well Process, Layout Design Rules,	MOS inv	erters: DC transfer characteristics, latchup, MOSFET			
UNIT-II	CMOS INVERTER		9hours			
CMOS inverter: 0	Circuit operation, DC transfer characteristics, noise margin: c	alculation	of VIL, VIH, Vth, Design of CMOS inverter, Supply			
	power and area considerations. Switching characteristic: De					
with delay constra	aints, Switching Power dissipation of CMOS inverter.					
UNIT-III	COMBINATIONAL & SEQUENTIAL MOS LOGIC		8hours			
	CIRCUITS					
	IOS Logic Circuits: MOS logic circuits with NMOS loads, C					
using NMOS gate	es and CMOS gates, AOI and OIA gates, CMOS full adder, C	CMOS tran	smission gates, Designing with Transmission gates,			
1 -	Logic Circuits: Behavior of bi-stable elements, D latch, SR	Latch, C	locked latch and flip flop circuits, CMOS, and edge			
triggered flip-flop						
UNIT-IV	DYNAMIC LOGIC CIRCUITS		9hours			

Logic Circuits: Basic principle of pass transistor circuits, Voltage Bootstrapping, Synchronous dynamic circuit techniques, Dynamic CN	MOS
transmission gate logic, High performance Dynamic CMOS	

UNIT-V SEMICONDUCTOR MEMORIES

8 hours

Semiconductor Memories: Types, RAM array organization, DRAM – Types, Operation, Leakage currents in DRAM cell and refresh operation, SRAM operation Leakage currents in SRAM cells, Flash Memory- NOR flash and NAND flash

Course Outcome: After successful completion of this course students will be able to

CO 1	To identifythe fabrication process of CMOS transistor.	
CO 2	To identify basic concept of CMOS inverter operation, its characteristics and switching power dissipation.	
CO 3	Design combinational & Sequential MOS logic circuits like latches and flip flops.	
CO 4	Explain and design synchronous dynamic pass transistor circuits	
CO 5	Analyse SRAM cell and memory arrays.	

Text Books

- 1. Sung-Mo Kang & Yusuf Leblebici, CMOS Digital Integrated Circuits Analysis & Design, , MGH, Third Ed., 2003
- 2. Jan M Rabaey, Digital Integrated Circuits A Design Perspective, Prentice Hall, Second Edition, 2005
- 3. David A. Hodges, Horace G. Jackson, and Resve A. Saleh, Analysis and Design of Digital Integrated Circuits, Third Edition, McGraw-Hill, 2004

- 1. R. J. Baker, H. W. Li, and D. E. Boyce, CMOS circuit design, layout, and simulation, Wiley-IEEE Press, 2007
- 2. Christopher Saint and Judy Saint, IC layout basics: A practical guide, McGraw-Hill Professional, 2001

	M. TECH FII	RST YEA	AR	
Course Code	AMTVL0102	LTP	Credit	
Course Title	Advanced Digital Design using Verilog	3 0 0	03	
Course Object	ive:			
1	Study and explain the basic concepts Verilog HDI	٠.		
2	Implement digital circuits using distinct design sty	les.		
3	Design and synthesis digital circuits using HDLs.			
4	Study the concepts of data path design and switch			
	modeling.			
5	Explain about pipelining and processor design.			
Pre-requisites	Digital System Design			
	Course Conten	ts / Sylla	bus	
UNIT-I	INTRODUCTION TO HARDWARE DESCI LANGUAGE (HDL)	RIPTION	8 hours	
Introduction to ha	rdware description language (HDL), Verilog langua	ge and data	a types	
			description language (HDL), Verilog language features,	
			ypes in Verilog; net type, reg type, wire type, Verilog	
Models of propag	ation delay and net delay path delays and simulation	, inertial d	elay effects and pulse rejection	
UNIT-II	DISTINCT DESIGN STYLES		8 hours	
Verilog description	on styles, behavioral and structural design style, Ver	ilog attribu	ntes; Gate level, data flow level, procedural assignment,	
blocking / non-blo	ocking assignments, user defined primitives, Verilog	test bench	, writing Verilog test benches.	
UNIT-III	SYNTHESIS OF COMBINATIONAL &		8 hours	
	SEQUENTIAL LOGIC			
			combinational and sequential logic, synthesis of finite	
	onthesis of gated clocks, design partitions and hierard	chical struc		
UNIT-IV	DATA PATH AND CONTROLLER DESIGN		8 hours	
_	<u> </u>	nthesizable	e Verilog, Modeling memory, Modeling register banks,	
Switch level mod	6			
UNIT-V	PIPELINING AND PROCESSOR DESIGN		8 hours	
Basic pipelining of	concepts, Pipeline modeling, Pipeline implementatio	n of a proc	essor, Verilog modeling of the processor.	
Course Outco	me: After successful completion of this co	urse stud	lents will be able to	

CO 1	Outline the basic concepts Verilog HDL.
CO 2	Design of digital circuits using distinct design styles.
CO 3	Model HDL based Synthesis of digital circuits.
CO 4	Analyze the concepts of data path design and switch level modeling.
CO 5	Implement pipelining and processor design using Verilog modeling.

Text books

- 1. Navabi, Z., 1999. Verilog digital system design. McGraw-Hill.
- 2. Palnitkar, S., 2003. Verilog HDL: a guide to digital design and synthesis (Vol. 1). Prentice Hall Professional.
- 3. Arnold, M.G., 1998. Verilog digital computer design: Algorithms into hardware. Prentice-Hall, Inc.

- 1. Lin, M.B., 2008. Digital system designs and practices: using Verilog HDL and FPGAs. Wiley Publishing.
- 2. Unsalan, C. and Tar, B., 2017. Digital system design with FPGA: implementation using Verilog and VHDL. McGraw-H

Link:	
Unit 1	https://www.youtube.com/watch?v=wiNDn19GpRU&list=PLUtfVcb-iqn-EkuBs3arreilxa2UKIChl&index=3
Unit 2	https://www.youtube.com/watch?v=xWimKdisUXE&list=PLUtfVcb-iqn-EkuBs3arreilxa2UKIChl&index=12
Unit 3	https://www.youtube.com/watch?v=lpS3S2gVoB4&list=PLUtfVcb-iqn-EkuBs3arreilxa2UKIChl&index=23
Unit 4	https://www.youtube.com/watch?v=cIDoJtYdDVA&t=66s
Unit 5	https://www.youtube.com/watch?v=w1u338oIeTQ

	M. TECH FIRST	YEAR	
Course Code	AMTCC0101	LTP	Credit
Course Title	Research Process & Methodology	3 0 0	03
Course Objec	tive:	 	
	explain the concept / fundamentals of research and their ty	oes	
2 To	study the methods of research design and steps of research	process	
	explain the methods of data collection and procedure of	f sampling	
	analyze the data, apply the statistical techniques and und neept of hypothesis testing	erstand the	
5 To	study the types of research report and technical writing.		
Pre-requisites	Basics of Statistics		
	Course Contents / S	yllabus	
UNIT-I	INTRODUCTION TO RESEARCH	•	8 hours
	tive and motivation of research, types and approaches of re Qualitative, Conceptual vs. Empirical, Research methods v		1 11
research.			
~	RESEARCH FORMULATION AND DESIGN		8 hours
research. UNIT-II Research proces Locating relevan	RESEARCH FORMULATION AND DESIGN s and steps involved, Definition and necessity of research tliterature, Reliability of a source, Writing a survey and its of research design.		Importance and objective of Literature review,
research. UNIT-II Research proces Locating relevan	s and steps involved, Definition and necessity of research t literature, Reliability of a source, Writing a survey and in		Importance and objective of Literature review,
research. UNIT-II Research proces Locating relevan Design , Method UNIT-III Classification of	s and steps involved, Definition and necessity of research literature, Reliability of a source, Writing a survey and its of research design.	dentifying the	Importance and objective of Literature review, he research problem, Literature Survey, Research 8 hours lection of primary and secondary data, sampling,

Processing Operations, Data analysis, Types of analysis, Statistical techniques and choosing an appropriate statistical technique, Hypothesis Testing, Data processing software (e.g. SPSS etc.), statistical inference, Chi-Square Test, Analysis of variance(ANOVA) and covariance, Data Visualization – Monitoring Research Experiments ,hands-on with LaTeX.

UNIT-V	TECHNICAL WRITING AND REPORTING OF RESEARCH	8 hours

Types of research report: Dissertation and Thesis, research paper, review article, short communication, conference presentation etc., Referencing and referencing styles, Research Journals, Indexing, citation of Journals and Impact factor, Types of Indexing-SCI/SCIE/ESCI/SCOPUS/DBLP/Google Scholar/UGC-CARE etc. Significance of conferences and their ranking, plagiarism, IPR- intellectual property rights and patent law, commercialization, copy right, royalty, trade related aspects of intellectual property rights (TRIPS); scholarly publishing- IMRAD concept and design of research paper, reproducibility and accountability.

Course outcome: Upon completion of the course, the student will be able to

CO 1	Explain concept / fundamentals for different types of research	
CO 2	Apply relevant research Design technique	
CO 3	Use appropriate Data Collection technique	
CO 4	Evaluate statistical analysis which includes various parametric test and non-parametric test and ANOVA technique	
CO 5	Prepare research report and Publish ethically.	

Text books

- 1. C. R. Kothari, Gaurav Garg, Research Methodology Methods and Techniques , New Age International publishers, Third Edition.
- 2. Ranjit Kumar, Research Methodology: A Step-by-Step Guide for Beginners, 2nd Edition, SAGE 2005.
- 3. Deepak Chawla, NeenaSondhi, Research Methodology, Vikas Publication

Reference Books

- 1. Donald Cooper & Pamela Schindler, Business Research Methods, TMGH, 9th edition
- **2.** Creswell, John W. ,Research design: Qualitative, quantitative, and mixed methods approaches sage publications,2013

NPTEL/ You tube/ Faculty Video Link:

https://www.youtube.com/playlist?list=PL6G1C6j0WUTXqXL9O0CgTXCr1hL8HR2dY https://www.youtube.com/playlist?list=PLVok63jpnHrFFQI6BqkIksVqDnYG0ZI41

https://www.youtube.com/playlist?list=PLnbm2MNkZYwOVVedGBQtID-jKgj9dD8kW

https://www.youtube.com/playlist?list=PLPjSqITyvDeWBBaFUbkLDJ0egyEYuNeR1

https://www.youtube.com/playlist?list=PLdj5pVg1kHiOypKNUmO0NKOfvoIThAv4N

	M. TECH FIRST YEAR					
Course C	ode	AMTVL0151		LTP	Credit	
Course T	itle	CMOS Digital VLSI Design Lab		0 0 4	02	
		List	of Experimen	t		
Sr. No.	Nan	ne of Experiment				
1		y of Microwind software and its features.				
2	Desig	gn, simulate and verify the stick diagram of CM	IOS Inverter usin	g Microw	wind.	
3	Desig	gn, simulate and verify the result of universal g	ates using Micro	wind		
	` '	NAND (b) NOR				
4		gn, simulate and verify theresult of following g	ates using Micro	wind		
	(a) X	KOR (b) XNOR				
5	Desig	gn, simulate and verify the operation of logic fu	inction using Mic	rowind Y	$Y = ((B + CD)(E + F))^{\circ}$	
6	Desig	gn, simulate and verify the operation of CMOS	half adder using	Microwin	nd.	
7	Desig	gn, simulate and verify the operation of CMOS	full adder using	two half a	adders in Microwind.	
8		gn, simulate and verify the operation of 4:1 Mu				
9	-		f logic function	n using	Dynamic and Domino logic in Microwind:	
	, ,	B+CD)(E+F))				
10	Design, simulate and verify pseudo NMOS Inverter.					
		outcome: After completion of this course stu	udents will be ab	ole to		
CO 1		yze the features of Microwind software.				
CO 2		gn, simulate and verify the result of universal g	, , ,			
CO 3		gn, simulate and verify the operation of logic fu				
CO 4	,	gn, simulate and verify the operation of CMOS			rowind.	
CO 5	Design, simulate and verify the operation of Multiplexer in Microwind.					
Link:	Link:					
_	•	utube.com/watch?v=F-8_caipPsY				
•		ube.com/watch?v=S1VOEqApQvA				
•	https://www.youtube.com/watch?v=EHUJda2ttU8					
https://www	https://www.youtube.com/watch?v=yHJmFuexWbM					

https://www.youtube.com/watch?v=7K_0I6CjBOY

M. TECH FIRST YEAR				
Course Code	AMTVL0152	LTP	Credit	
Course Title	Advanced Digital Design Lab using Verilog	0 0 4	02	

Modeling and Functional Simulation of the following digital circuits (with Xilinx/ ModelSim tools) using Verilog Hardware Description Language.

Sr. No.	Name of Experiment
1	Design and simulate the Verilog HDL code to describe the functions of a Full Adder and Subtractor using three
	modeling styles.
2	Design and simulate the Verilog HDL code for the following combinational circuits:
	a) 4x1 Multiplexer using gate level modeling
	b) 8x1 Multiplexer using dataflow level modeling
	c) 4-Bit Binary to Gray Code Converter using structural modeling
3	Design and simulate the Verilog HDL code for the following combinational circuit:
	a) 3 to 8 Decoder
	b) 8 to 3 Encoder
4	Design and simulate the Verilog HDL code for the following combinational circuits using structural modeling.
	a) 16x1 Multiplexer using 4x1 Mux
	b) 4- Bit Comparator using 1 Bit Comparator
5	Design and simulate the Verilog HDL code for the basic arithmetic and bitwise logical operations of ALU.
6	Design and simulate the Verilog HDL code for the flip-flops:
	a) SR FF
	b) JK FF
	c) DFF
	d) TFF
7	Design and simulate the Verilog HDL code for the following counters:
	a) 4- Bit Up-Down Counter
	b) BCD counter (Synchronous reset and asynchronous reset)
8	Design and simulate the Verilog HDL code for the following 4- Bit Shift register:
	a) SISO
	b) SIPO
	c) PIPO
	d) PISO
9	Design and simulate the Verilog HDL code for 4- Bit universal shift register.

10	Design and simulate the Verilog HDL code to detect the sequence 1010101.				
Lab Course	Lab Course Outcome: After completion of this course students are able				
CO 1	Translate the digital design into the Verilog HDL.				
CO 2	Design the combinational circuits in Verilog HDL.				
CO 3	Design the sequential circuits in Verilog HDL.				
CO 4	Implement different digital circuits with component testing.				
Link:	Link:				
Unit 1	https://www.youtube.com/watch?v=wiNDn19GpRU&list=PLUtfVcb-iqn-EkuBs3arreilxa2UKIChl&index=3				
Unit 2	https://www.youtube.com/watch?v=xWimKdisUXE&list=PLUtfVcb-iqn-EkuBs3arreilxa2UKIChl&index=12				
Unit 3	Unit 3 https://www.youtube.com/watch?v=lpS3S2gVoB4&list=PLUtfVcb-iqn-EkuBs3arreilxa2UKIChl&index=23				
Unit 4	https://www.youtube.com/watch?v=cIDoJtYdDVA&t=66s				
Unit 5	https://www.youtube.com/watch?v=w1u338oIeTQ				

M. TECH FIRST YEAR					
Course	Code	AMTVL0111	LTP	Credit	
Course '	Title	Microelectronics	3 0 0	03	
Course	Object	ive:			
1	To pr	ovide the knowledge of different fabrication proc	esses like	,	
		y, oxidation and their applications.			
2		vide the knowledge of diffusion, ion implantation and	different		
		of lithography and etching.			
3		ovide the knowledge of Discrete devices and its fabrication			
4	_	ovide the knowledge of Different digital logic circuits a	nd analog		
	circuit				
5		ovide the basic knowledge of BiCMOS ICs and their pa	ckaging.		
Pre-requ	uisites	Basics of digital electronics, CMOS designing.			
		Course Content	s / Syllal	ous	
UNIT-I		FABRICATION PROCESS		8 hours	
Need f	or epita	xy, Vapour phase epitaxy, Liquid phase epitaxy and M	olecular-B	eam epitaxy, Silicon on insulators.	
				Polysilicon deposition, Metallization & it's Application,	
Maskii	ng.				
UNIT-II]	DIFFUSION & ION IMPLANTATION		8 hours	
Basic o	diffusio	n, Distribution and range of implanted ions, Annealing	and activa	tion of dopants.	
LITHO	OGRAP!	HY & ETCHING: Optical lithography, X-ray lithography	aphy, Ion	lithography, Electron beam lithography, Wet chemical	
etching	g and D	ry chemical etching.			
UNIT-II	II	DISCRETE DEVICE FABRICATION		8 hours	
Fabrica	ation of	p-n junction, Bipolar junction transistor, JFET, MOSFI	ET, CMOS	S Fabrication (P-well, N-well & Twin top Process)	
UNIT-IV DESIGNING OF ANALOG AND DIGITAL CIRCUITS 8 how			8 hours		
NOR (Gate, Tv	For analog and digital ICs, functional elements availal two Input NAND Gate. s—single stage CE Amplifier and Emitter Follower.	ole in the	market. CMOS Logic Circuits— Inverter, Two Input	
UNIT-V	7	BICMOS ICs		8 hours	

Design rules and Scaling, BICMOS ICs: Choice of transistor types, pnp transistors, Resistors, capacitors, Packaging: Chip characteristics, package functions, package operations.

Course Outcome:	After successful completion of this course students will be able to
------------------------	---

CO 1	Identify different fabrication processes	
CO 2	Implement diffusion, ion implantation and different types of lithography and etching.	
CO 3	Explain Discrete devices and their fabrication.	
CO 4	Design different digital logic circuits and analogcircuits	
CO 5	Categorize BiCMOS ICs and their packaging.	

Text books

- 1. Peter Van Zant, Microchip fabrication, McGraw Hill, 1997.
- 2. S.M. Sze, VLSI technology, McGraw-Hill Book company, NY, 1988.

- 1. S.K. Gandhi, 'VLSI Fabrication Principles'.
- 2. S.M. Sze, 'Semiconductor Devices Physics and Technology'.
- 3. Puckness Douglas A, Eshraghiaw Kamran "Basic VLSI Design" Prentice Hall (India)
- 4. K.R. Botkar, 'Integrated Circuits'

M. TECH FIRST YEAR						
Course Co	Course Code AMTVL0112 L T P Credit					
Course Ti	tle MOS Device Modeling	3 0 0	0 03			
Course O	bjective:					
1 T	o study and analysis of MOS structure, its operations	and, MC	MOS as a			
Ca	pacitor.					
2 T	o study and analysis of MOSFET Device Characteristics.					
3 T	3 To study and analysis of Mobility models, MOS Performance parameters and					
its frequency limitations.						
4 T	To study and analysis of SOI MOSFET.					
5 To study and analysis of SPICE Models for Semiconductor Devices.						
Pre-requi	sites: Basic Electronics Engineering					
Course Contents / Syllabus						
UNIT-I MOS PHYSICS 8 hours			8 hours			
Semiconductor surfaces, Ideal MOS structure, MOS device in thermal equilibrium, Non-Ideal MOS: work function differences, charges in						
oxide, interface states, band diagram of non-ideal MOS, flat-band voltage, electrostatics of a MOS (charge based calculations), calculating						
	1 3/000 1 1 11 1 3/00	•				

various charges across the MOSC, threshold voltage, MOS as a capacitor (2 terminal device), Three terminal MOS, effect on threshold voltage.

MOSFET DEVICE CHARACTERISTICS **UNIT-II**

8 hours

Field-Effect Transistors: MOSFET- basic operation and fabrication; threshold voltages; output and transfer characteristics of MOSFET, short channel and Narrow width effects, MOSFET scaling, Small signal modeling for low frequency and High frequency, high-k gate dielectrics, ultra-shallow junctions, source and drain resistance.

MOBILITY MODELS AND MOS **UNIT-III** PERFORMANCE PARAMETERS

10 hours

Low field mobility, high field mobility, mobility various models, on current characteristics, off current characteristics, sub threshold swing, effect of interface states on sub threshold swing, drain conductance and transconductance, effect of source bias and body bias on threshold voltage and device operation, Large signal Modeling, small signal model for low, medium and high frequencies.

UNIT-IV THE SOI MOSFET

6 hours

Multiple gate SOI MOSFETs: double gate, FINFET, comparison of capacitances with bulk MOSFET, PD and FD SOI devices, short channel effects, current-voltage characteristics: Lim &Fossum model and C-\infty model, impact ionization and high field effects: Kink effect and Hot-carrier degradation, Floating body and parasitic BJT effects, self-heating.

UNIT-V	SPICE MODELS FOR SEMICONDUCTOR DEVICES	8 hours
SPICE Mo	dels for Semiconductor Devices: MOSFET Level 1, Level 2 and level 3 model, Mo	odel parameters;
Course (Dutcome: After successful completion of this course students will be able to	
CO 1	Explain and analyse MOS structure, its operations and , MOS as a capacitor.	
CO 2	Explain and analyse MOSFET Device Characteristics.	
CO 3	Explain and analyse the Mobility models, MOS Performance parameters and its frequency limitations.	
CO 4	Explain and analyse SOI MOSFET.	
CO 5	Explain and analyse SPICE Models for Semiconductor Devices.	
Text Boo	oks	

Text Books

- 1. E.H. Nicollian, J. R. Brews, Metal Oxide Semiconductor Physics and Technology, John Wiley and Sons.
- 2. Nandita Das Guptha, Amitava Das Guptha, Semiconductor Devices Modeling and Technology, Prentice Hall India
- 3. Jean-PierrieColinge, Silicon-on-insulator Technology: Materials to VLSI, Kluwer Academic publishers group.

Reference Books

- 1. P. Colinge, "FinFETs and Other Multi-Gate Transistors", Springer. 2009
- 2. Yannis Tsividis, Operation and Modeling of the MOS transistor, Oxford University Press.

Video Lecture Links:

Unit I:

https://www.youtube.com/watch?v=KohWxkovp0k

https://www.youtube.com/watch?v=CT6olzelSKQ

https://ocw.tudelft.nl/course-lectures/semiconductor-junction/

Unit II:

https://www.youtube.com/watch?v=0C4uxtS-tlQ

https://www.youtube.com/watch?v=XcDeh98ppXk

https://www.youtube.com/watch?v=uHTyw4GGnRo

https://www.youtube.com/watch?v=xSh9PZZPpOc

Unit III:

https://www.youtube.com/watch?v=4m49vM0Ryt8

https://www.youtube.com/watch?v=xgYdLvWcvms

https://www.youtube.com/watch?v=IrbGAgrevic

Unit IV:

https://www.youtube.com/watch?v=WWjldCmRteg

https://www.youtube.com/watch?v=syRQTHF88eQ

https://nptel.ac.in/courses/113/104/113104012/

https://www.youtube.com/watch?v=vS3S1KfNLhE

Unit V:

https://nptel.ac.in/courses/117/106/117106033/

https://www.digimat.in/nptel/courses/video/108107129/L04.html

https://www.digimat.in/nptel/courses/video/117105147/L01.html

https://www.coursera.org/lecture/averagedswitchmodelingandsimulation/spice-simulation-example-pJ99m

NPTEL course video link:

https://nptel.ac.in/courses/117/106/117106033/

M. TECH FIRST YEAR				
Course Code	AMTVL0113	LTP	Credit	
Course Title	Analog IC Design	3 0 0	03	
Course Object	tive:			
	To develop the ability to design and analyze MOS based Analog VLSI circuits.			
	To analyze the performance of single stage amplifier			
	To develop the skills to design Differential Amplifier circuits for a given specification.			
	Analyze the frequency response of the different configurations of an amplifier			
	To provide the knowledge of operational amplifier & feedback topologies.			
Pre-requisites	Basic electronics devices, Semiconductor & Amplifier	S		
_	Course Content	s / Sylla	bus	
UNIT-I	BASIC MOS DEVICE PHYSICS		8 hours	
	General Considerations, MOSFET as a Switch, MOS I/V Characteristics, Second-Order Effects, MOS Device Models, MOS Device Capacitances, NMOS versus PMOS Devices, Long-Channel versus Short-Channel Devices.			
UNIT-II	SINGLE-STAGE AMPLIFIERS		8 hours	
			S Stage with Diode-Connected Load, CS Stage with Current-	
	ce Follower, Common-Gate Stage, Cascode Stage, Folded Ca	scode.		
UNIT-III	DIFFERENTIAL AMPLIFIERS		8 hours	
			se, Differential Pair with MOS Loads, Gilbert Cell, Passive and	
	rors, Basic Current Mirrors, Cascode Current Mirrors, Active	Current M	· · · · · · · · · · · · · · · · · · ·	
UNIT-IV	FREQUENCY RESPONSE OF AMPLIFIERS		8 hours	
	tions, Miller Effect, Association of Poles with Nodes, Commo oise in Differential Pairs Feedback Topologies, Effect of Loa		Stage, Source Followers, Common-Gate Stage, Cascode Stage, et of Feedback on Noise	
UNIT-V	OPERATIONAL AMPLIFIERS		8 hours	
General Considerations, Performance Parameters, One-Stage Op Amps, Two-Stage Op Amps , Gain Boosting , Comparison , Common-Mode Feedback . Input Range Limitations, Slew Rate, Power Supply Rejection.				
Course Outcome: After successful completion of this course students will be able to				

CO 1	Draw the equivalent circuits of MOS based Analog VLSI and analyse their performance.
CO 2	Design analog VLSI circuits for a given specification.
CO 3	Analyse the frequency response of the different configurations of an amplifier.
CO 4	Analyse the feedback topologies involved in the amplifier design.
CO 5	Appreciate the design features of the differential amplifiers.

Text books

- 1. Razavi, "Design of Analog CMOS Integrated Circuits", 2nd Edition, McGraw Hill Edition 2016.
- 2. Paul. R.Gray&Robert G. Meyer, "Analysis and Design of Analog Integrated Circuits", Wiley, 5th Edition, 2009.
- 3. R. Gregorian and Temes, "Analog MOS Intgrated Circuits for Signal Processing", Wiley Publications

- 1. Ken Martin, "Analog Integrated Circuit Design", Wiley Publications.
- 2. Sedra and Smith, "Microelectronic Circuits", Oxford Publications.
- 3. B.Razavi, "Fundamentals of Microelectronics", Wiley Publications

	M. TECH FIR	ST	YEA	R
Course Code	AMTVL0114	LT	' P	Credit
Course Title	Microchip Fabrication Technology	3 0	0	03
Course Object	ive:			
1	To analyze the basic stages of manufacturing and cry	/stal g	growt	h.
2	To evaluate the process of wafer preparation and oxi	datio	n.	
3	To analyze the lithography and etching process			
4	To explain process of diffusion and ion implantation			
5	To learn the basic process involved in metallization	and p	ackag	ging
Pre-requisites:	Basics of semiconductors and their properties.			
	Course Content	s/S	yllal	bus
UNIT-I	OVERVIEW OF SEMICONDUCTOR INDUSTI	RY		8 hours
Quality. UNIT-II	WAFER FABRICATION	parati	on, C	Zzochralski (CZ) method, Float zone, Crystal and Wafer 8 hours
Basic Wafer Pre	paration, Wafer Terminology, Basic Wafer-Fabricatisks, Example of Fabrication Process, Oxidation: Dry		-	tions: Layering, Patterning, Doping, Heat treatments,
UNIT-III	LITHOGRAPHY AND ETCHING			8 hours
Ten step patternin	ng process, Lithography: Optical Lithography, Electr	on be	eam	lithography, Photo masks, Wet Chemical Etching, Dry
etching Wet etchin	ng.			
UNIT-IV	DOPING AND DEPOSITION 8 hours			8 hours
1 0 1	pment, CVD basics, CVD process steps, Low pressu			lation, Ion-Implantation: Ion-Implantation Technique, ystems, Plasma enhanced CVD systems, Vapour phase
UNIT-V	METALLIZATION AND PACAKAGING 8 hours			
	11 '		-	Deposition, Vacuum Deposition, Sputtering Apparatus.
Packaging of VLS	I devices: Package Types, Packaging Design Conside	ration	, Pac	kage Fabrication Technologies.
Course Outcor	ne: After successful completion of this course stud	lents	will	be able to
CO 1	Analyze the basic stages of manufacturing and crysta	al gro	wth.	

CO 2	Evaluate the process of wafer preparation and oxidation.
CO 3	Analyze the lithography and etching process.
CO 4	Explain the process of diffusion and ion implantation.
CO 5	Learn the basic process involved in metallization and packaging

Text books

- 1. Peter Van Zant, Microchip fabrication, McGraw Hill, 1997.
- 2. S.M. Sze, VLSI technology, McGraw-Hill Book company, NY, 1988

- 1. Wani-Kai Chen (editor), The VLSI Hand book, CRI/IEEE press, 2000
- 2. C.Y. Chang and S.M. Sze, ULSI technology, McGraw Hill, 2000
- 3. S.K. Ghandhi, "VLSI Fabrication Principles", Willy-India Pvt. Ltd, 2008.
- 4. J. D. Plummer, M. D. Deal and Peter B. Griffin, "Silicon VLSI Technology: Fundamentals, Practice and Modeling", Pearson Education Publication, 2009

M. TECH FIRST YEAR				
Course Code	AMTVL0115	LT P	Credit	
Course Title	Clean Room Technology And Maintenance	300	03	
Course Object	ive:			
1	Study and explain cleanroom standards and cleanrooms.	ancillary		
2	Knowledge about clean room fabrication environment			
3	Identify the various filtration mechanisms.			
4	Categorize cleanroom testing and monitoring system.			
5	Analyze air quantities, pressure differences and clean disciplines.	room		
Pre-requisites:	Basics of IC Technology			
	Course Contents /	Syllabus	3	
UNIT-I	INTRODUCTION TO CLEAN ROOM TECHNOL	LOGY	8 hours	
,	nroom Classification Standards, Unidirectional air flow 14644-1:1999, Cleanroom classification (Pharmaceutical,		· · · · · · · · · · · · · · · · · · ·	
209,150 standard	14044-1.1333, Cleanfoolii Classification (Tharmaceutical,	Cleamoon	115)	
UNIT-II	CLEAN ROOM ENVIRONMENT		8 hours	
_	ently Ventilated and Ancillary Cleanrooms, Mini environcesign of Unidirectional Cleanrooms.	nments, is	olators and RABS, Containment zone, Construction	
UNIT-III	FILTRATION MECHANISM		8 hours	
High Efficiency A	ir filtration, Particle removal mechanisms, testing of high	n efficienc	y filters.	
UNIT-IV	TESTING & MONITORING SYSTEM		8 hours	
Cleanroom Testin	g and Monitoring, Principles of cleanroom testing, Testir	ng in relati	on to room type and occupation state, Monitoring of	
cleanroom.				
	CLEAN ROOM STANDARD PARAMETERS		8 hours	
UNIT-V	CEEM ROOM STREET THE WELLERS		o nours	
UNIT-V Measurement of A	Air Quantities and Pressure Differences, Air movement	control, R	2 2 3 12	
UNIT-V		control, R		

CO	Specify cleanroom standards and ancillary cleanrooms.
CO	Explain about clean room fabrication environment.
CO 3	Identify the surface finishes and filtration mechanisms.
CO 4	4 Categorize cleanroom testing and monitoring system.
CO	Analyze air quantities, pressure differences and clean room disciplines.
Text boo	ks
1. Will	liam White, Cleanroom Technology: Fundamentals of Design, Testing and Operation, 2nd Edition, Wiley, 2010.
2. Mat	ts Ramstorp, Introduction to Contamination Control and Cleanroom Technology, Wiley, 2008.
Referenc	e Books
1. Wa	ni-Kai Chen (editor), The VLSI Hand book, CRI/IEEE press, 2000
	• • • • • • • • • • • • • • • • • • • •
Link:	
Unit 1	nttps://www.youtube.com/watch?v=8uGZMyjFugg

https://www.youtube.com/watch?v=YAouXIS_FSU

https://www.youtube.com/watch?v=wSSfOqEQClc

https://www.youtube.com/watch?v=aBIxPo0p7dc

Unit 5 https://www.youtube.com/watch?v=lHmHYWdH8Ug

Unit 2

Unit 3

Unit 4

M. TECH FIRST YEAR				
Course Code	AMTVL0116	LTP	Credit	
Course Title	ULSI Technology	3 0 0	03	
Course Objecti	ve:	-		
1	To study the basics of chip fabrication and	d clean room.		
2	To learn the ion implantation and variousOxidation technologies.			
3	To study the classification of lithographic techniques.			
4	To identify various metallization schemes			
5	To explain the concept of Memories.			
Pre-requisites:	Microelectronics			
_	Course C	ontents / Syllabus		
UNIT-I	CLEAN ROOM AND WAFER PREPA	RATION	8 hours	
			ing process and wet chemical etching techniques r construction analysis, TEM sample preparation	

UNIT-II IMPURITY INCORPORATION

9 hours

Solid-state diffusion modelling and technology, Ion implantation: modelling, technology and damage annealing; Characterization of impurity profiles.

Oxidation: kinetics of silicon dioxide growth for thick, thin and ultra-thin films. Oxidation technologies in ULSI; Characterization of oxide films; high K and low K dielectrics for ULSI.

UNIT-III LITHOGRAPHIC TECHNIQUES

9 hours

Photolithography techniques for VLSI/ULSI; Mask generation.

Chemical Vapour deposition techniques: CVD techniques for deposition of polysilicon, silicon dioxide, silicon nitride and metal films; epitaxial growth of silicon; modelling and technology. Ion implantation and substrate defects, Dielectrics and isolation, Silicides, polycide and salicide, Metallization and interconnects.

UNIT-IV METALLIZATION TECHNIQUES 8 hours

Evaporation and sputtering techniques. Failure mechanisms in metal interconnects; multilevel Metallization schemes. TEM in failure analysis, Novel devices and materials, TEM in under bump metallization and advanced electronics packaging technologies, High – resolution TEM in microelectronics.

UNIT-V	ULSI DEVICES	6 hours
--------	--------------	---------

DRAM cell with planar capacitor, ULSI devices II: DRAM cell with stacked capacitor, ULSI devices III: DRAM cell with trench capacitor, ULSI devices IV: SRAM.

Course Outcome: After successful completion of this course students will be able to

CO 1	Explain basics of chip fabrication and clean room.	
CO 2	Perform the ion implantation and various Oxidation technologies.	
CO 3	Apply lithographic techniques for the designing of circuits.	
CO 4	Explain and analyze metallization schemes.	
CO 5	Design semiconductor memories.	

Text books

- 1. S.M. Sze(2nd Edition)"VLSI Technology", McGraw Hill Companies Inc.
- 2. Chih-Hang Tung, George T.T. Sheng, Chih-Yuan Lu, ULSI Semiconductor Process Technology Atlas, John Wiley & Sons, 2003.
- 3. C.Y. Chang and S.M. Sze (Ed), "ULSI Technology", 2000, McGraw Hill Companies Inc.

- 1. Stephena, Campbell, "The Science and Engineering of Microelectronic Fabrication", Second Edition, Oxford University Press.
- 2. James D. Plummer, Michael D. Deal, "Silicon VLSI Technology" Pearson Education Reading.

	M. TECH FIRST YE	EAR	
Course Code	AMTVL0201	LT P	Credit
Course Title	Digital Design using FPGA and CPLD	300	03
Course Objecti	ive:	1	
1	To study finite state machines and its realization.		
2	To study asynchronous Sequentialmachine.		
3	To learn Designing of Digital logic using PLD.		
4	To get knowledge of different FPGA series.		
5	To study different CPLD series.		
Pre-requisites:	Basics of CMOS and Fabrication.		
	Course Contents / Syl	labus	
UNIT-I	FINITE STATE MACHINE (FSM)		8 hours
	ASYNCHRONOUS SEQUENTIAL CIRCUIT Asynchronous Sequential Machine (ASM), fundamental assignments in Asynchronous Sequential machine, Races & H		ode Asynchronous Sequential machine,
UNIT-III	PROGRAMMABLE LOGIC DEVICES (PLD)		8 hours
Introduction, Archit scanner using PLD.	ecture, Features & Digital Design of ROM, EPROM, EEPROM,	Flash Memo	ory, PLA, PAL & PGA, Design of a keypad
UNIT-IV	FIELD PROGRAMMABLE GATE ARRAY (FPGA)		8 hours
	ting architecture, Design flow, Technology Mapping for FPG 4000, Comparative Study of Xilinx (ZU11EG) & Intel (Strategy)		0 series from Altera) with reference to cortex
UNIT-V	COMPLEX PROGRAMMABLE LOGIC DEVICES (CPLD)		8 hours

Altera series – Max 5000/7000 series and Altera FLEX logic- 10000 series CPLD, AMD's- CPLD (Mach 1 to 5), Cypress FLASH 370 Device technology, Lattice plsi architectures – 3000 series – Speed performance and system programmability.

Course Outcome: After completion of this course students will be able to		
CO 1	Realize finite state machines.	
CO 2	Formulate asynchronous Sequentialmachine.	
CO 3	Design Digital logic using PLD.	
CO 4	Explain different FPGA series.	
CO 5	Explain different CPLD series.	

Text books

- 1. P. K. Chan& S. Mourad, Digital Design using Field Programmable Gate Array, Prentice Hall.
- 2. Charles H Roth, Jr., "Digital Systems Design Using VHDL", PWS, 1998.
- 3. S. Trimberger, Edr., Field Programmable Gate Array Technology, Kluwer Academic Pub.

- 1. J. Old Field, R. Dorf, Field Programmable Gate Arrays, John Wiley& Sons, Newyork.
- 2. S.Brown, R.Francis, J.Rose, Z.Vransic, Field Programmable GateArray, Kluwer Pub.
- 3. Richard FJinder, "Engineering Digital Design," Academic press

	M. TECH FIRST Y	EAR	
Course Code	AMTVL0202	LT P	Credit
Course Title	Low Power VLSI Design	300	03
Course Objective	ve:		
1	To provide the knowledge of Low Power VLSI C different losses associated with the CMOS Devices	1	
2	To provide the knowledge of Power estimation Simulation analysis and Probabilistic power analysis of Design		
3	To provide the knowledge of circuit level and Logic leve		
4	To provide the knowledge of Low Power Architecture an		
5	To provide the basic knowledge of Low Power Clock Dis Algorithm & Architectural Level Methodologies	stribution	
Pre-requisites: (CMOS VLSI Design, Digital logic Design.		
•	Course Contents / Sy	llabus	
UNIT-I	INTRODUCTION & DEVICE AND TECHNOLOGY IMPACT ON LOW POWER		8 hours
approaches, Physics Device and techno	ds for Low Power VLSI Chips, Sources of power dissipation in CMOS Devices, logy impact on low power: Dynamic dissipation on low part of Technology & Device innovation	•	
UNIT-II	POWER ESTIMATION SIMULATION POWER AN & PROBABILISTIC POWER ANALYSIS	NALYSIS	8 hours
	Simulation Power analysis : - SPICE circuit simulators, Gate level Capacitance Estimation, Architecture Level ana		_
	er analysis:- Random Logic Signals. Probability & frequen	cy, Probab	ilistic Power Analysis Techniques, Signal
UNIT-III	LOW POWER DESIGN		8 hours
Circuit level: Power	er Consumption in circuit level, Flip Flop & Latches design	n, High Cap	
Logic Level: Gate 1	Reorganisation, Signal gating, Logic encoding, state machi	ne encodin	g, Pre computation logic
UNIT-IV	LOW POWER ARCHITECTURE AND SYSTEM		8 hours

UNIT-V	LOW POWER CLOCK DISTRIBUTION & ALGORITHM & ARCHITECTURAL LEVEL METHODOLOGIES	8 hours
Low Power Clo	ock Distribution: -Power dissipation in clock distribution, single driver Vs	distributed buffers, zero skew Vs tolerable
kew chip and pa	package co-design of clock network	
	Architectural Level Methodologies:-Introduction, Design flow, Algori	thmic Level analysis and optimization
	vel estimation and synthesis	
Course Outco	ome: After successful completion of this course students will be able to	
CO 1	Identify different losses associated with the CMOS Devices.	
CO 1	identify different losses associated with the Civios Bevices.	
CO 2	Explain the concept of Power estimation Simulation Power	
	analysis and Probabilistic Power analysis of Design.	
CO 3	Identify circuit and logic level low power design.	
CO 4	Analyze the Low Power Architecture and system.	
20 1	That ye the Low Tower Themteetare and System.	
CO 5	Explain Low Power Clock Distribution Algorithm.	
Text books		
	Yeap, Practical Low Power Digital VLSI Design, KAP 2007	

Reference Books

1. Kaushik Roy, Sharat Prasad, "Low-Power CMOS VLSI Circuit" Wiley 2000

		1		TECH I	FIRST Y	EAR			,	1
Course Code		AMTVL0251						LTP	Credit	
Course Title		Digital Design using FPGA and CPLD Lab							0 0 4	02
Pre-requisite	es: Basics K	nowledge of Digi	tal Electronics &	t Digital Sy	ystem Desi	ign				
Sr. No.	List of Experiment									
1	Demonstration of FPGA and CPLD Boards.									
2	Design & Implement the Boolean Expression Y=AB+BC+CA on CPLD.									
3	Design & Implement Full adder and Full Subtractor on CPLD.									
4.	Design & Implement (i) 2-bit comparator and (ii) 2-bit multiplier (iii) 8x1 Multiplexer on CPLD.									
5	Design & Implement S-R, J-K, D and T Flip Flops on FPGA.									
6	Design & Implement (i) Universal shift register (ii) 4- bit UP-DOWN Synchronous Counter on FPGA.									
7	Design &	Design & Implement the (i) 4-bit ALU (ii) 8- bit SRAM on FPGA.								
8	Design &	Design & Implement 7- Segment Display Driver circuit using CPLD.								
9	Design &	Design & Implement Sequence Detector Circuit to detect given sequence 10101010 on FPGA.								
10	Modelling	Modelling and Implementation of UART on FPGA.								
Lab Course	Outcome:	: After completio	on of this course	students v	will be ab	le to				
CO 1	Design & Implement the Combinational Logic Circuits on CPLD.									
CO 2	Design & Implement the Sequential Logic Circuits on CPLD.									
CO 3	Design & Implement the Memories on FPGA.									
CO 4	Design & Implement UART on FPGA.									
Link:										
1	https://wv	https://www.youtube.com/watch?v=9mpRF6bAY1g								
2	https://wv	https://www.youtube.com/watch?v=EGDHXynlXMk								
3	https://wv	https://www.youtube.com/watch?v=H2GyAIYwZbw								
4	https://wv	https://www.youtube.com/watch?v=WKZgK3BKDIo								
5	https://www.youtube.com/watch?v=s3Dk4CEfNg4&list=PLJ5C_6qdAvBELELTSPgzYkQg3HgclQh-5&index=6									

M. TECH FIRST YEAR						
Course Code	AMTVL0252	LT P	Credit			
Course Title	Low Power VLSI Design Lab	004	02			

Software Tool: SOFTWARE TOOL: CADENCE – Tool Bundle Consisting of:

- 1. ANALOG & MIXED SIGNAL DESIGN FRONT END TOOLS
 - Virtuoso(R) Spectre(R) Simulator REL MMSIM 7.1
 - Virtuoso(R) Schematic Editor XL REL IC 6.1.0
- 2. ANALOG BACK END TOOL
 - Virtuoso(R) Layout Suite XL REL IC 6.1.0
- 3. PHYSICAL DOMAIN
 - SOC Encounter XL (aka Cadence (R) SOC Encounter GPS)

Sr. No.	Name of Experiment			
1	I-V characteristics of long and short-channel MOSFET transistors in CMOS technology.			
2	The gate capacitance of an MOS transistor. (Gate Capacitance v/s VGS).			
3	The impact of device variations on static CMOS inverter VTC.			
4	The VTC of CMOS inverter as a function of supply voltage and substrate bias.			
5	Dynamic power dissipation due to charging and discharging capacitances.			
6	Short-circuit currents during transients and impact of load capacitance on short-circuit current in a CMOS inverter.			
7	The VTC of a two-input NAND & NOR data dependency.			
8	The variable-threshold CMOS inverter and Combinational circuit.			
9	The low-power / low voltage D-Latch circuit.			
10	Low-power circuits a. The Full Adder b. The Binary Adder c. The Multiplier d. The Shifter. e. The SRAM Cell f. The DRAM Cell			
Lab Course (Outcome: After completion of this course students are able to			

CO 1	Study and analyze the various parameters of MOS Transistor.	
CO 2	Study and analyze the different parameters of CMOS inverter for low power design.	
CO 3	Design and implement the combinational digital circuits for low power circuits.	
CO 4	Design and implement the sequential digital circuits for low power circuits.	
Link:		
Unit 1	https://www.youtube.com/watch?v=TFOO1JAll2Y	
	https://youtu.be/ruClwamT-R0	
Unit 2	https://www.analog.com/en/design-center/design-tools-and-calculators/ltspice-simulator.html	
	https://www.youtube.com/watch?v=OgO1gpXSUzU	
	https://nptel.ac.in/courses/111/106/111106134/	
Unit 3	https://nptel.ac.in/courses/106/105/106105034/	
	https://www.youtube.com/watch?v=dqcfYTePRxQ	
	https://www.youtube.com/watch?v=rEeqxozkdZ0	
Unit 4	https://www.digimat.in/nptel/courses/video/106105034/L37.html	
Unit 5	https://nptel.ac.in/courses/106/105/106105161/	

	M. TECH FIRST Y	EAR	
Course Code	AMTVL0211	LTP	Credit
Course Title	VLSI Testing and Testability	3 0 0	03
Course Objectiv	e:		
1	To provide an in-depth understanding of the importance principle of testing and verification of faults affecting V circuits.		
2	To provide the knowledge of the testing and testability combinational circuits.		
3	To provide the knowledge of the testing and testability of sequential circuits.		
4	To provide an in-depth understanding of the memory de testing methods.		
5	To provide the basic knowledge of Built in self-test (BIS Techniques.	ST)	
Pre-requisites:D	igital and analog IC fabrication.		
	Course Contents / S	yllabus	
UNIT-I	INTRODUCTION TO VLSI TESTING AND FAUL MODELING	T	10 hours
to testing, Complexi	ciple of testing, Challenges in VLSI testing, Levels of abs ity of the testing problem, Types of Testing, DC and AC p ck at fault, fault equivalence, fault collapsing, fault domin	arametric	tests
UNIT-II	TESTING AND TESTABILITY OF COMBINATIONAL CIRCUITS		8 hours
	sics: Test generation algorithms, Random test generation, sitization, $D-$ algorithm, PODEM, Testable combinations		
UNIT-III	TESTING AND TESTABILITY OF SEQUENTIAL CIRCUITS		8 hours
Sequential ATPG,	l circuits as iterative combinational circuits, state table ve s, scan path technique (scan design), partial scan, Boundar		test generation based on circuit structure,
UNIT-IV	MEMORY, DELAY, FAULT AND IDDQ TESTING		6 hours
	esign, RAM fault models, Test algorithms for RAM, Delay		

UNIT-V	BUILT IN SELF-TEST (BIST) TECHNIQUES	8 hours
Built-in self-test	(BIST): Design rules, Exhaustive testing, Pseudo-random testing, Pse	
	itectures, Introduction to Test compression	
Course Outco	ome: After successful completion of this course students will be abl	e to
CO 1	Apply the concepts in testing which can help them design a better yield in IC design	
CO 2	Analyse the various test generation methods for combinational circuits.	
CO 3	Analyse the various test generation methods for sequential circuits.	
CO 4	Identify the design for testability methods for different memory circuits.	
CO 5	Recognize the BIST techniques for improving testability.	
Text books		
1. An Introd	duction to Logic Circuit Testing - Parag K. Lala, (Morgan & Claypool	Publishers)
	s of Electronic Testing for Digital, Memory & Mixed Signal VLSI Circu, (Kluwar Academic Publishers 2000)	uits - Michael L. Bushnell and Vishwani D.
3. Digital S	ystem Testing and Testable Design - M. Abramovici, M.Breuer, and A.	Friedman (Jaico Publishing House)
Reference Bo	oks	

VLSI Test Principles and Architectures Design for Testability – W.W. Wen (Morgan Kaufmann Publishers. 2006)
 Digital Systems and Testable Design - M.Abramovici, M.A. Breuer and A.D. Friedman (Jaico Publishing House)
 Design Test for Digital IC's and Embedded Core Systems - A.L. Crouch (Prentice Hall International)

Link:	
Unit 1	https://youtu.be/u_XLaTTzXaE
Unit 2	https://nptel.ac.in/courses/106/103/106103116/
Unit 3	https://nptel.ac.in/courses/106/103/106103116/
Unit 4	https://nptel.ac.in/courses/106/103/106103116/
Unit 5	https://nptel.ac.in/courses/106/103/106103116/

	M. TECH FIR	ST YEA		
Course Code	AMTVL0212	LTP	C	redit
Course Title	VLSI DSP Architectures	3 0 0		03
Course Object	tive:			
1	To explain basics of DSP processors and micro approaches.	o progran	ning	
2	To learn building a data path and control path.			
3	To outline pipelining and pipe lined data path.			
4	To analyzeA/D and D/A converters and DSP comput	ational err	·s.	
5	To identify thearchitectures for programmable processing devices.			
Pre-requisites	: VLSI DSP Architecture			
•	Course Contents	s / Syllal	IS	
UNIT-I	BASICS OF DSP PROCESSORS	, and the second	8 h	nours
Essential features	of Instruction set architectures of DSP processors, Mic	ro progra	ming approaches for impl	lementation of control part of
the processor, CP	U performance and its factors, evaluating performance.			-
UNIT-II	DATA PATH			9 hours
Introduction to lo control design.	gic design conventions, building a data path, a simple in	mplement	ion scheme, a multi cycle	implementation, simplifying
UNIT-III	PIPELINING			9 hours
An overview of p	ipelining, a pipe lined data path, pipe lined control, data	hazards a	d forwarding, data hazard	ls, branch hazards, advanced
pipelining: extrac	ting more performance.		O ,	
UNIT-IV	CONVERSIONS			8 hours
	for signals and coefficients in DSP systems, dynamic ra, and DSP computational errors, D/A conversion errors		cision, sources of errors i	n DSP implementations, A/D
UNIT-V			8 hours	
	chitectures for programmable digital signal processing ecture, data addressing capabilities, address generation			
·	me: After successful completion of this course stud			ur moortuomg.
CO 1	Identify basics of DSP processors and micro approaches.			

CO 2	Learn building a data path and control path.	
CO 3	Analyze pipelining and pipe lined data path.	
CO 4	CalculateA/D and D/A converters and DSP computational errors.	
CO 5	Implement architectures for programmable digital signal processing devices.	

- 1. D. A, Patterson and J.L Hennessy, "Computer Organization and Design: Hardware/ Software Interface", 4th Ed., Elsevier, 2011.
- 2. A. S Tannenbaum, "Structural Computer organization", 4th Ed., Prentice-Hall, 1999.

- 1. W. Wolf, "Modern VLSI Design: System on Silicon", 2nd Ed., Person Education, 1998.
- 2. Keshab Parhi, "VLSI Digital Signal Processing system design and implementations", Wiley1999.

			M. TECH	FIRST YEA	R	
Cour	se Cod	le	AMTVL0213	LT P	Cre	edit
Cour	se Titl	e	Full Custom Design	300	03	
Cour	se Obj	jective	:			
1	Studen	nts will l	be familiar with the schematic fundamentals and l	ayout designs f	ow.	
2			come to know about standard library cells as well	as other types of	f	
	basic c					
3			be able to design interconnect layout and know sp	ecial electrical		
4		ements f			,	
5			be able to incorporate special design rules and step be able to learn various kind of CAD tools.	o coverage rule	5.	
			sics of VLSI			
116-1	equisi	ies.bas	Course Con	tonts / Syllol	NIIG	
UNIT	ГТ		INTRODUCTION Course con	tents / Synai	us	8 hours
		Cahama		CMOC VI CI	manuf	acturing processes, Layers and connectivity, Process
			nce of full custom IC design, layout design flows.		manur	acturing processes, Layers and connectivity, Process
UNI		<u>ığımıcu</u>	SPECIALIZED BUILDING BLOCKS			8 hours
,		hniques		libraries. Pad	cells a	nd Laser fuse cells, Power grid Clock signals and
	onnect re		of opening comming com			and substitute could, I allier gird crook organize und
UNI			LAYOUT DESIGNS			8 hours
Interco	onnect la	ayout de	esign, Special electrical requirements, Layout desi	gn techniques t	o addr	
UNI	Γ-IV		LAYOUT CONSIDERATIONS			8 hours
Layou	t consid	lerations	s due to process constraints Large metal via imple	ementations, Sto	p cove	erage rules, Special design rules, Latch-up and Guard
		cting th	e pad ring, Minimizing Stress effects.			
UNIT-V LAYOUT CAD TOOLS				8 hours		
Proper	r layout (CAD to	ools for layout, Planning tools, Layout generation	tools, Support t	ools.	
Cour	se Out	tcome:	After successful completion of this course stu	dents will be a	ble to	
CC	0.1	Design	layout with schematic.			
CC) 2	Differe	entiate standard cells and other types of cells.			
CC) 3	Do the	electrical connections and interconnect layout de	signs.		
CC	0.4	Tackle	with the minimization of stress effects.			

CO 5	Demonstrate the layout tools, generation tools, etc.
Text books	
1.Dan Clein,	CMOS IC Layout Concepts Methodologies and Tools, Newnes, 2000.
2.Ray Alan H	lastings, The Art of Analog Layout, 2nd Edition, Prentice Hall, 2006
Reference	Books
1. CMOS: Ci	rcuit Design, Layout, and Simulation by R. Jacob Baker. 3rd Edition.

	M. TECH FIR	RST YE	AR
Course Code	AMTVL0214	LT P	Credit
Course Title	MEMS Sensor Design	300	03
Course Object	ive:	•	
1	To provide the knowledge of MEMs far Technologies and Sensors/Transducers.	abrication	
2	To provide the knowledge about Mechanics of Bean Diaphragm Structures.	n and	
3	To provide the knowledge about drag effect of a fluidamping and its models.	id, Air	
4	To provide the knowledge of Electrostatic Actuation		
5	To provide the basic knowledge of MEMS Structure Systems in RF applications.	es and	
Pre-requisites:	Basics of sensors.		
	Course Conten	ts / Sylla	ibus
UNIT-I	INTRODUCTION TO MEMS		8 hours
MEMS Fabricati	on Technologies, Materials and Substrates for	MEMS,	Processes for Micromachining, Sensors/Transducers,
Piezoresistive Effe	ect, Piezoelectricity, Piezoresistive Sensor.		
UNIT-II	MECHANICS OF BEAM AND DIAPI STRUCTURES	HRAGM	8 hours
	Hooke's Law. Stress and Strain of Beam Structures: Street of Beam Structures Under Weight, Bending of Ca		ain in a Bent Beam, Bending Moment and the Moment of Beam Under Weight.
UNIT-III	AIR DAMPING		8 hours
Drag Effect of a	Fluid: Viscosity of a Fluid, Viscous Flow of a Flui	d, Drag F	Force Damping, The Effects of Air Damping on Micro-
Dynamics. Squeez	ze-film Air Damping: Reynolds' Equations for Squee	ze-film A	ir Damping, Damping of Perforated Thick Plates. Slide-
film Air Damping	: Basic Equations for Slide-film Air Damping, Couett	e-flow Mo	odel, Stokes-flow Model.
UNIT-IV	ELECTROSTATIC ACTUATION		8 hours
			ostatic Driving of Mechanical Actuators: Parallel-plate
Actuator, Capacit Frequency.	tive sensors. Step and Alternative Voltage Driving	g: Step V	oltage Driving, Negative Spring Effect and Vibration
UNIT-V	MEMS STRUCTURES AND SYSTEMS APPLICATIONS	IN RF	8 hours

Signal Integrity in RF MEMS, Microelectromechanical Resonators: Comb-Drive Resonators, Beam Resonators, Coupled-Resonator
Bandpass Filters, Film Bulk Acoustic Resonators, Microelectromechanical Switches: Membrane Shunt Switch, Cantilever Series Switch.

Course Outco	Course Outcome: After successful completion of this course students will be able to		
CO 1	Identify MEMs fabrication Technologies.		
CO 2	Analyse Mechanics of Beam and Diaphragm Structures.		
CO 3	Explain drag effect of a fluid, Air damping and its models.		

CO 4

CO 5

1. Minhang Bao, 'Analysis and Design Principles of MEMS Devices', First edition 2005, Elsevier.

Explain MEMS Structures and Systems in RF applications.

2. Nadim Maluf, KirtWilliums, 'An Introduction to Microelectromechanical Systems Engineering',2nd ed., Artech House microelectromechanical library.

Reference Books

1. RS Muller, Howe, Senturia and Smith, "Micro-sensors", IEEE Press.

Design different Electrostatic Actuators.

	M. TECH FIRS	T YEA	R
Course Code	AMTVL0215	LT P	Credit
Course Title	Nanoscale Devices: Modeling & Simulation	300	03
Course Object	ctive:		
1	To introduce novel MOSFET devices and understar advantages of multi-gate devices	nd the	
2	To introduce the concepts of nanoscale MOS transistor and their performance characteristics		
3	To study the various Nano-scaled MOS transistor circuit	S	
4	To study radiation effects in SOI MOSFETs		
5	To study digital circuits and impact of device performan	nce on	
	digital circuits		
	Course Contents	/ Syllal	bus
UNIT-I MOSFET SCALING			8 hours
engineering, SO	g, short channel effects - channel engineering - source/dra I MOSFET, multigate transistors - single gate - double lity - thresholdvoltage-intersub-bandscattering, multigatete	gate – t	riple gate – surround gate, quantum effects – volume
UNIT-II	MOS ELECTROSTATICS		8 hours
MOS Electrostat	tics - 1D - 2D MOS Electrostatics, MOSFET Current-V	oltage C	haracteristics - CMOSTechnology - Ultimate limits,
•	S system – gate voltage effect - semiconductor thickness two dimensional confinements, scattering –mobility.	effect –	asymmetry effect – oxide thickness effect – electron

UNIT-III SILICON NANOWIRE MOSFETS 10 hours

Silicon nanowire MOSFETs – Evaluation of I-V characteristics – The I-V characteristics for non- degenerate carrier statistics – The I-V characteristics for degenerate carrier statistics – Carbon nanotube – Band structure of carbon nanotube – Band structure of graphene – Physical structure of nanotube – Band structure of nanotube – Carbon nanotube FETs – Carbon nanotube MOSFETs – Schottky barrier carbon nanotube FETs – Electronic conduction in molecules – General model for ballistic nano transistors – MOSFETs with 0D, 1D, and 2D channels – Molecular transistors – Single electron charging – Single electron transistors

UNIT-IV	RADIATION EFFECTS IN SOI MOSFETS	6 hours
Radiation effects	s in SOI MOSFETs, total ionizing dose effects – single-gate SOI –	multi-gate devices, single event effect, scaling effects.
UNIT-V	DIGITAL CIRCUITS	8 hours

Digital circuits – impact of device performance on digital circuits – leakage performance trade off – multi VT devices and circuits –
SRAM design, analogcircuit design – transconductance - intrinsic gain – flicker noise – self heating –band gap voltage reference –
operational amplifier – comparator designs, mixed signal – successive approximation DAC, RF circuits.

Course Outcome:	After successful com	pletion of this course	e students will be able to
------------------------	----------------------	------------------------	----------------------------

CO 1	Explain the MOS devices used below 10nm and beyond with	
	an eye on the future	
CO 2	Explain the physics behind the operation of multi-gate	
	systems.	
CO 3	To design circuits using nano-scaled MOS transistors with the	
	physical insight of their functional characteristics	
CO 4	Explain radiation effects in SOI MOSFETs	
CO 5	Explain and designdigital circuits and impact of device	
	performance on digital circuits	
75 4 7 7		

- 1. J P Colinge, "FINFETs and other multi-gate transistors", Springer Series on integrated circuits and systems,2008
- 2. Mark Lundstrom, Jing Guo, "Nanoscale Transistors: Device Physics, Modelingand Simulation", Springer, 2006

Reference books

1. M S Lundstorm, "Fundamentals of Carrier Transport", 2nd Ed., Cambridge University Press, Cambridge UK, 2000

M. TECH FIRST YEAR				
Course Code	AMTVL0216	LTP	Credit	
Course Title	Physical Design & Automation	300	03	
Course Object				
1	Students will know how to place the blocks and how to p the blocks while for designing the layout for IC.	partition		
2	Students will be familiar to various kind of VLSI Automa Algorithms.	ntion		
3	Students will know the concepts of Physical Design Procesuch as Floor planning, Placement algorithms.	ess		
4	Students will learn Global Routing and Detailed Routing algorithms.			
5	Students will learn over the Cell Routing in detail.			
Pre-requisites:	Basics of digital IC and data structures.			
	Course Contents / Sy	llabus		
UNIT-I	LOGIC SYNTHESIS & VERIFICATION		8 hours	
Logic Synthesis & level synthesis.	& Verification: Introduction combinational logic synthesis	s, Binary	decision Diagram, Hardware models for High-	
UNIT-II	VLSI AUTOMATION ALGORITHMS		8 hours	
	Algorithms: Partition: problem formulation, classification ag & evolution other partitioning algorithms.	n of parti	tioning algorithms, Group migration algorithms,	
UNIT-III	PLACEMENT, FLOOR PLANNING & PIN ASSIGN	MENT	8 hours	
-	Planning & Pin assignment: problem-formulation, singuint-based floor planning, floor planning algorithms for			
UNIT-IV	GLOBAL ROUTING & DETAILED ROUTING		8 hours	
Steiner Tree based Detailed Routing:	Problem formulation, classification of global routing algorithm, ILP based approaches. problem formulation, classification of routing algorithms, layer channel routing algorithms, and switchbox routing algorithms.	single lay		
UNIT-V	OVER THE CELL ROUTING & VIA MINIMIZATION		8 hours	
Over the Cell R	outing & via Minimization: two layers over the cell lem formulation, one-dimensional compaction, two dimens		constrained & unconstrained via minimization	

Course Outcon	Course Outcome: After successful completion of this course students will be able to		
CO 1	Know how to place the blocks and how to partition the blocks while for designing the layout for IC.		
CO 2	Explain VLSI Design Automation.		
CO 3	Explain the concepts of Physical Design Process such as Floor planning, Placement and Routing.		
CO 4	AnalyzeGlobal Routing and Detailed Routing algorithms.		
CO 5	Decompose large problem into pieces via minimization.		

1. Naveed Sherwani, "Algorithms for VLSI Physical Design Automation", Kluwer Academic Publisher, Second edition.

- 1. ChristophnMeinel&ThorstemTheobold, "Algorithm and Data Structures for VLSI Design", KAP 2002.
- 2. Rolf Drechsheler: "Evolutionary Algorithm for VLSI", second edition
- 3. Trimburger," Introduction to CAD for VLSI", Kluwer Academic publisher, 2002.

M. TECH FIRST YEAR					
Course Code	AMTVL0217	LTP	Credit		
Course Title	Embedded Microcontrollers	3 0 0	03		
Course Objecti	ive:				
1	To provide the Basic knowledge of interfal Embedded System.	cing with			
2	To analyse the process design of embedded	system.			
3	To realize the architecture of PIC 16F Micro Series.	controller			
4	To familiar with the fundamentals of ARM l Cortex M3 & M4.	Processor			
5	To apply the knowledge of ARM Instructi programming.	on Set for			
Pre-requisites:	Digital System design, 8051 Microcontroller				
Course Contents / Syllabus					
UNIT-I	TYPICAL EMBEDDED SYSTEMS		8 hours		
Core of the embedded system, General purpose and domain specific processor, ASICs, PLDs, Commercial off the shelf Components (COTS), Memory: RAM, ROM, Memory according to the type of interface, Memory Shadowing, Memory selection for embedded system, Sensors and actuators, Introduction to Communication Interface (Onboard and External).					
UNIT-II	EMBEDDED SYSTEMS DESIGN PROC	ESS	8 hours		
Embedded system project development, Design issues and co-design issues in system development process, The Embedded Design Life Cycle, Selection Process, The Partitioning Decision (Hardware and Software partitioning), The Development and Debugging Environment (use of target machine or its emulator and In- Circuit emulator), Special Software Techniques, Introduction to BDM, JTAG, and Nexus.					
UNIT-III PIC 16F MICROCONTROLLER SERIES 8 hours					
Introduction to PIC Microcontroller families (8/16 and 32 bit), PIC 16F series family overview of architecture and peripherals, Pin diagram and Architecture of PIC16F84/PIC16F84A Microcontroller, Memory organization, configuration, memory addressing, and special function registers, parallel and serial ports, timer and counters. Special features of PIC16F84A (OSC Selection, RESET - Power-on Reset (POR), Power-up Timer (PWRT), Oscillator Start-up Timer (OST), Interrupts, Watchdog Timer (WDT), SLEEP,					
			Architectural overview of PIC 16F877/PIC 16F887A.		
UNIT-IV	ARCHITECTURE OF ARM CORTEX M4 PROCESSORS	M3 AND	8 hours ecture, Instruction set, Block diagram, Memory system,		

Interrupt and exception support). Programmer's model, Operation modes, Registers, Memory System, features, stack memory, memory requirements, endianness, bit band operations, access permissions and attributes, memory barriers, Low power design and features, low power application development, overview of exceptions and interrupts, exception types and interrupt management, vector table, exception sequence, use of NVIC register, SCB register and other special registers for exception and interrupt control, configuration control and auxiliary control registers.

UNIT-V INSTRUCTION SETOF CORTEX M3 AND M4 8 hours PROCESSORS

Evolution of ARM ISA, Comparison of the instruction set in ARM Cortex-M Processors, Unified Assembly Language, Addressing modes, Instruction set, Program flow control (branch, conditional branch, conditional execution, and function calls), Multiply accumulate (MAC) instructions, Divide instructions, Memory barrier instructions, Exception-related instructions, Sleep mode-related instructions, Other functions, Introduction to Cortex-M4 processor support for Enhanced DSP instructions, Writing C and Assembly language programs.

Course Outcome: After successful completion of this course students will be able to

CO 1	Explain the Basic knowledge of interfacing with	
	Embedded System.	
CO 2	Analyse the process design of embedded system.	
CO 3	Realize the architecture of PIC 16F Microcontroller	
	Series.	
CO 4	Familiar with the fundamentals of ARM Processor	
	Cortex M3 & M4.	
CO 5	Apply the knowledge of ARM Instruction Set for	
	programming.	

Text books

- 1. Introduction to Embedded Systems, A Cyber physical approach, Edward A. Lee and Senjit A. Seshia.
- 2. Embedded Systems Design: An Introduction to Processes, Tools, and Techniques, by Arnold S. Berger, CMP Books.

- 1. Designing Embedded Systems with PIC Microcontrollers: Principles and Applications, 2nd Edition, Tim Wilmshurst, Elsevier Publication.
- **2.** PIC Microcontroller and Embedded Systems Using Assembly and C for PIC 18 by Muhammad Ali Mazidi, Rolin D. McKinlay and Danny Causey, Pearson Publication.
- 3. The Definitive Guide to ARM Cortex M3 and Cortex-M4 Processors, Third Edition, Joseph Yiu, Elsevier Publication, 2015.
- 4. ARM Assembly Language Fundamentals and Techniques, William Hohl and Christopher Hinds, CRC Press, 2015.

M. TECH FIRST YEAR			
Course Code	AMTVL0218	LTP	Credit
Course Title	Real Time Operating System	3 0 0	03
Course Object	ive:		
1	To provide the concept of real time operating system.		
2	To analyse the task scheduling method & I/O system.		
3	To realize the firmware design process.		
4	To familiar with the different types of management sy for RTOS.	stem	
5	To explain the concept of RTX.		
Pre-requisites:	Digital System design, Microcontroller.		
_	Course Contents / S	yllabu	S
UNIT-I	OPEN SOURCE RTOS		8 hours
POSIX standards,	TOS environment, Memory management, File system RTOS Issues – Selecting a Real Time Operating System kernel, Xenomai basics. Overview of Open source RT pment	em, RTC	OS comparative study. Converting a normal Linux
UNIT-II	Vx WORKS/ FREE RTOS		8 hours
	ΓOS Scheduling and Task Management – Real time sch	eduling,	
	age Queue, Signals, Sockets, Interrupts. I/O Systems – C		
Module explanation	on, Implementation of Device Driver for a peripheral.		
UNIT-III	EMBEDDED FIRMWARE DESIGN AND		10 hours
	DEVELOPMENT		
	are Design Approaches, Super-loopbased approach, Er		
	ntegrated development environment (IDE), Overview of		, I
UNIT-IV	EMBEDDED SYSTEM DESIGN WITH FREE RT		6 hours
	ent, Characteristics of a Queue, Working with Large		
	Critical Sections and Suspending the Scheduler, Resource	e Manag	
UNIT-V	RTX		8 hours

RTX structure, RTX files, RTX task and time management, Simple Time Management APIs, Task Priority Scheme in RTX, Inter-Task Communication, Event, Interrupt, Mutex, Semaphore, Mailboxes and Messages in RTX, RTX control functions, Architecture of CMSIS-RTOS.

CO 1	Explain the concept of real time operating system.
CO 2	Analyse the task scheduling method & I/O system.
CO 3	Realize the firmware design process.
CO 4	Familiar with the different types of management system for RTOS.
CO 5	Explain the concept of RTX.

Text books

- 1. VenkateswaranSreekrishnan,"Essential Linux Device Drivers", Ist Kindle edition, Prentice Hall, 2008
- 2. Jonathan W. Valvano, "Real-Time Operating Systems for ARM Cortex-M Microcontrollers" Jonathan Valvano; 4 edition

- 1. Jerry Cooperstein, "Writing Linux Device Drivers: A Guide with Exercises", J. Cooperstein publishers, 2009
- 2. Qing Li and Carolyn Yao,"Real Time Concepts for Embedded Systems" Qing Li, Elsevier ISBN:1578201241 CMP Books © 2003
- 3. "Using the FreeRTOS Real Time Kernel" From Free RTOS.
- 4. Sam Siewert, "Real-Time Embedded Systems And Components".

AMBA 3 AHB-Lite Bus Architecture, AHB VGA Peripheral, AHB UART Peripheral, Timer, GPIO and 7-Segment Peripherals, Interrumentalisms, Programming an SoC Using C Language.		M. TECH FIRST YEAR			
Course Objective: 1 Study the Architecture of Arm Cortex-M0 Processor. 2 Describe the AMBA 3 AHB-Lite Bus Architecture, VGA, GPIO and 7-Segment UART Peripheral 3 Learn the Programming of SoC Using C Language. 4 Compare ARM Cortex-A9 Processor with other processor. 5 Implement and compare an AXI UART and AXI-Stream Peripheral Pre-requisites: 1. Basics of HDL (Verilog /VHDL) 2. Basics of Microcontroller Assembley language Programming Course Contents / Syllabus UNIT-I INTRODUCTION TO SYSTEM-ON-CHIP B hours DESIGN Differences among SoCs, CPUs and MCUs, Arm Cortex-M0 Processor Architecture. UNIT-II PROGRAMMING AN SOC AMBA 3 AHB-Lite Bus Architecture, AHB VGA Peripheral, AHB UART Peripheral, Timer, GPIO and 7-Segment Peripherals, Interrumechanisms, Programming an SoC Using C Language. UNIT-III ARM CORTEX-A9 PROCESSOR 8 hour	Course Code	AMTVL0219	LT P	Credit	
1 Study the Architecture of Arm Cortex-M0 Processor. 2 Describe the AMBA 3 AHB-Lite Bus Architecture, VGA, GPIO and 7-Segment UART Peripheral 3 Learn the Programming of SoC Using C Language. 4 Compare ARM Cortex-A9 Processor with other processor. 5 Implement and compare an AXI UART and AXI-Stream Peripheral Pre-requisites: 1. Basics of HDL (Verilog /VHDL) 2. Basics of Microcontroller Assembley language Programming Course Contents / Syllabus UNIT-I INTRODUCTION TO SYSTEM-ON-CHIP 8 hours DESIGN Differences among SoCs, CPUs and MCUs, Arm Cortex-M0 Processor Architecture. UNIT-II PROGRAMMING AN SOC 8 hou AMBA 3 AHB-Lite Bus Architecture, AHB VGA Peripheral, AHB UART Peripheral, Timer, GPIO and 7-Segment Peripherals, Interrumechanisms, Programming an SoC Using C Language. UNIT-III ARM CORTEX-A9 PROCESSOR 8 hour	Course Title	System On Chip (SOC) Design using ARM	300	03	
2 Describe the AMBA 3 AHB-Lite Bus Architecture, VGA, GPIO and 7-Segment UART Peripheral 3 Learn the Programming of SoC Using C Language. 4 Compare ARM Cortex-A9 Processor with other processor. 5 Implement and compare an AXI UART and AXI- Stream Peripheral Pre-requisites: 1. Basics of HDL (Verilog /VHDL) 2. Basics of Microcontroller Assembley language Programming Course Contents / Syllabus UNIT-I INTRODUCTION TO SYSTEM-ON-CHIP DESIGN Differences among SoCs, CPUs and MCUs, Arm Cortex-M0 Processor Architecture. UNIT-II PROGRAMMING AN SOC AMBA 3 AHB-Lite Bus Architecture, AHB VGA Peripheral, AHB UART Peripheral, Timer, GPIO and 7-Segment Peripherals, Interrumental ARM CORTEX-A9 PROCESSOR 8 hour UNIT-III ARM CORTEX-A9 PROCESSOR 8 hour VINIT-III ARM CORTEX-A9 PROCESSOR	Course Object	ive:			
VGA, GPIO and 7-Segment UART Peripheral 3 Learn the Programming of SoC Using C Language. 4 Compare ARM Cortex-A9 Processor with other processor. 5 Implement and compare an AXI UART and AXI-Stream Peripheral Pre-requisites: 1. Basics of HDL (Verilog /VHDL) 2. Basics of Microcontroller Assembley language Programming Course Contents / Syllabus UNIT-I INTRODUCTION TO SYSTEM-ON-CHIP 8 hours DESIGN Differences among SoCs, CPUs and MCUs, Arm Cortex-M0 Processor Architecture. UNIT-II PROGRAMMING AN SOC 8 hours AMBA 3 AHB-Lite Bus Architecture, AHB VGA Peripheral, AHB UART Peripheral, Timer, GPIO and 7-Segment Peripherals, Interru Mechanisms, Programming an SoC Using C Language. UNIT-III ARM CORTEX-A9 PROCESSOR 8 hours	1	Study the Architecture of Arm Cortex-M0 Processor	or.		
4 Compare ARM Cortex-A9 Processor with other processor. 5 Implement and compare an AXI UART and AXI-Stream Peripheral Pre-requisites: 1. Basics of HDL (Verilog /VHDL) 2. Basics of Microcontroller Assembley language Programming Course Contents / Syllabus UNIT-I INTRODUCTION TO SYSTEM-ON-CHIP 8 hours Differences among SoCs, CPUs and MCUs, Arm Cortex-M0 Processor Architecture. UNIT-II PROGRAMMING AN SOC 8 hou AMBA 3 AHB-Lite Bus Architecture, AHB VGA Peripheral, AHB UART Peripheral, Timer, GPIO and 7-Segment Peripherals, Interrumental Mechanisms, Programming an SoC Using C Language. UNIT-III ARM CORTEX-A9 PROCESSOR 8 hours	2		ture,		
processor. 5 Implement and compare an AXI UART and AXI- Stream Peripheral Pre-requisites: 1. Basics of HDL (Verilog /VHDL) 2. Basics of Microcontroller Assembley language Programming Course Contents / Syllabus UNIT-I INTRODUCTION TO SYSTEM-ON-CHIP DESIGN Differences among SoCs, CPUs and MCUs, Arm Cortex-M0 Processor Architecture. UNIT-II PROGRAMMING AN SOC AMBA 3 AHB-Lite Bus Architecture, AHB VGA Peripheral, AHB UART Peripheral, Timer, GPIO and 7-Segment Peripherals, Interru Mechanisms, Programming an SoC Using C Language. UNIT-III ARM CORTEX-A9 PROCESSOR 8 hour	3	Learn the Programming of SoC Using C Language	-		
Stream Peripheral	4	1 *			
2. Basics of Microcontroller Assembley language Programming Course Contents / Syllabus UNIT-I INTRODUCTION TO SYSTEM-ON-CHIP B 8 hours DESIGN Differences among SoCs, CPUs and MCUs, Arm Cortex-M0 Processor Architecture. UNIT-II PROGRAMMING AN SOC 8 hours AMBA 3 AHB-Lite Bus Architecture, AHB VGA Peripheral, AHB UART Peripheral, Timer, GPIO and 7-Segment Peripherals, Interrum Mechanisms, Programming an SoC Using C Language. UNIT-III ARM CORTEX-A9 PROCESSOR 8 hours	5	_			
Course Contents / Syllabus UNIT-I INTRODUCTION TO SYSTEM-ON-CHIP DESIGN Differences among SoCs, CPUs and MCUs, Arm Cortex-M0 Processor Architecture. UNIT-II PROGRAMMING AN SOC AMBA 3 AHB-Lite Bus Architecture, AHB VGA Peripheral, AHB UART Peripheral, Timer, GPIO and 7-Segment Peripherals, Interrumechanisms, Programming an SoC Using C Language. UNIT-III ARM CORTEX-A9 PROCESSOR 8 hours			·		
UNIT-I INTRODUCTION TO SYSTEM-ON-CHIP DESIGN Differences among SoCs, CPUs and MCUs, Arm Cortex-M0 Processor Architecture. UNIT-II PROGRAMMING AN SOC AMBA 3 AHB-Lite Bus Architecture, AHB VGA Peripheral, AHB UART Peripheral, Timer, GPIO and 7-Segment Peripherals, Interrumechanisms, Programming an SoC Using C Language. UNIT-III ARM CORTEX-A9 PROCESSOR 8 hours 9 h		2. Basics of Microcontroller Assembley language Pr	ogramming		
DESIGN Differences among SoCs, CPUs and MCUs, Arm Cortex-M0 Processor Architecture. UNIT-II PROGRAMMING AN SOC AMBA 3 AHB-Lite Bus Architecture, AHB VGA Peripheral, AHB UART Peripheral, Timer, GPIO and 7-Segment Peripherals, Interrumental Mechanisms, Programming an SoC Using C Language. UNIT-III ARM CORTEX-A9 PROCESSOR 8 hour		Course Conter	nts / Sylla	abus	
UNIT-IIPROGRAMMING AN SOC8 houAMBA 3 AHB-Lite Bus Architecture, AHB VGA Peripheral, AHB UART Peripheral, Timer, GPIO and 7-Segment Peripherals, Interrumental Mechanisms, Programming an SoC Using C Language.UNIT-IIIARM CORTEX-A9 PROCESSOR8 hou	UNIT-I			8 hours	
AMBA 3 AHB-Lite Bus Architecture, AHB VGA Peripheral, AHB UART Peripheral, Timer, GPIO and 7-Segment Peripherals, Interrumental Mechanisms, Programming an SoC Using C Language. UNIT-III ARM CORTEX-A9 PROCESSOR 8 hou	Differences amon	<u>C</u> ,	r Architect	ure.	
Mechanisms, Programming an SoC Using C Language. UNIT-III ARM CORTEX-A9 PROCESSOR 8 hou	UNIT-II	PROGRAMMING AN SOC		8 hours	
UNIT-III ARM CORTEX-A9 PROCESSOR 8 hou			ART Perip	heral, Timer, GPIO and 7-Segment Peripherals, Interrupt	
				8 hours	
	Arm CMSIS and	Software Drivers, Arm Development Studio, ARMv7	7-A/R ISA		
UNIT-IV AMBA AXI4 8 hou	UNIT-IV	AMBA AXI4		8 hours	
AMBA AXI4 Bus Architecture, Design and Implementation of an AXI4-Lite TM GPIO peripheral and a DDR Memory Controller	AMBA AXI4 Bus	Architecture, Design and Implementation of an AXI	4-Lite™ G	PIO peripheral and a DDR Memory Controller	
UNIT-V IMPLEMENTATION OF AN AXI UART AND AXI-STREAM 8 hou	UNIT-V			8 hours	
Design and Implementation of an AXI UART and AXI-Stream Peripheral, AXI4-Stream and VGA Peripheral, HDMI Input Peripheral, System Debugging.			eral, AXI4-	Stream and VGA Peripheral, HDMI Input Peripheral,	
Course Outcome: After completion of this course students will be able to	0 0	me• After completion of this course students will h	e able to		

CO 1	Explain Arm Cortex-M0 Processor Architecture.	
CO 2	RecognizeAMBA 3 AHB-Lite Bus Architecture, VGA, GPIO and 7-Segment UART Peripheral.	
CO 3	Program SoC Using C Language.	
CO 4	Explain ARM Cortex-A9 Processor.	
CO 5	Design and Implement an AXI UART and AXI-Stream Peripheral.	

- 1. ARM System-on-Chip Architecture by Steve B. Furber
- 2. ARM Assembly Language: Fundamentals and Techniques by William Hohl
- 3. The Definitive Guide to the ARM Cortex-M0 by Joseph Yiu

- 1. Computer System Design: System-On-Chip Michael J. Flynn and Wayne Luk, Wiely India.
- 2. Modern VLSI Design System on Chip Design Wayne Wolf, Prentice Hall,
- 3. Design of System on a Chip: Devices and Components, Ricardo Reis, Springer
- 4. System on Chip Verification Methodologies and Techniques: Prakash Rashinkar, Peter Paterson and Leena Singh L, Kluwer Academic Publishers

Link:		
Unit 1	https://www.youtube.com/watch?v=PRQXzjTrCJY https://www.youtube.com/watch?v=HNbeVvfFKsQ	
Unit 2	https://www.youtube.com/watch?v=j2NI4AXRs1Uhttps://www.youtube.com/watch?v=4VRtujwa_b8&list=PL90187D2B8F5AC28F∈ dex=5	
Unit 3	https://www.youtube.com/watch?v=4VRtujwa_b8	
Unit 4	https://www.youtube.com/watch?v=mYP5SxDEjrM https://www.youtube.com/watch?v=QQY-h0HGHnI https://www.youtube.com/watch?v=tEvtb-mdJ4s&list=PL90187D2B8F5AC28F&index=16	
Unit 5	https://www.youtube.com/watch?v=nbWWMPPC8aE https://www.youtube.com/watch?v=MANrmky5DfE	